

Fig. 8. Vue perspective de la structure suivant \mathbf{y}.

Bachmann, H. G., Ahmed, F. R. \& Barnes, W. H. (1961). Z. Kristallogr. 115, 110-131.

Bachmann, H. G. \& Barnes, W. H. (1961). Z. Kristallogr. 115, 215-230.
Borène, J. (1967). Thèse Paris. CNRS: AO 1121.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-323.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210-214.
Levy, H. A. (1956). Acta Cryst. 9, 679.
Peterse, W. J. A. M. \& Palm, J. H. (1966). Acta Cryst. (1966). 20, 147-150.

Rimsky, A. (1958). Thèse Paris No. 809.

Crystal Structure of a $\mathbf{2} \mathbf{M}_{\mathbf{2}}$ Lepidolite

By Franco Sartori, Marco Franzini and Stefano Merlino
Institute of Mineralogy, University of Pisa, Italy

(Received 24 October 1972; accepted 4 December 1972)
The crystal structure of a natural sample of a $2 \mathrm{M}_{2}$ lepidolite from the Island of Elba, Tuscany (Italy), has been determined and refined by least-squares methods using three-dimensional data collected by the Weissenberg method with $\mathrm{Cu} K \alpha$ radiation. This specimen has a composition close to $\mathrm{Pl}_{50} \mathrm{Tl}_{50}$ (where $\mathrm{Pl}=$ polylithionite, $\mathrm{Tl}=$ trilithionite) and cell dimensions: $a=9.04 \pm 0.02, b=5 \cdot 22 \pm 0.02, c=$ $20 \cdot 210 \pm 0.001 \AA, \beta=99^{\circ} 35^{\prime} \pm 20^{\prime}$. The main features of the structure are (a) a remarkable octahedral ordering, with one of the octahedral sites filled almost exclusively by Li atoms; (b) the tetrahedral sheets, made up by tetrahedra distorted into a form near to an elongated trigonal pyramid, deviate little from hexagonality ($\alpha=6^{\circ} 27^{\prime}$).

Introduction

The polymorphism of micas has long been, and still is, as ubject of great interest to mineralogists ever since

Hendricks \& Jefferson (1939) showed that these minerals crystallize with one of several layered structures, all of which are based on the same substructure. Many studies have been devoted to the problem of enumerat-
ing all possible stacking sequences of mica polymorphs, to the experimental methods of identification of such polymorphs, and to the survey of their frequencies of occurrence.
The present trend of research in the field of mica polymorphism is toward a more detailed knowledge of the structure of several polymorphs as an indispensable basis for understanding the factors which control their crystallization.

Following this trend we decided to undertake the determination of the structure of a $2 \mathrm{M}_{2}$ lepidolite, whose features should be very important for the evaluation of the structural controls over mica polymorphism. The crystal structure of a $2 \mathrm{M}_{2}$ lepidolite was published by Takeda, Haga \& Sadanaga (1971) when the present determination was completed and the refinement was in process. As the chemical composition of this $2 \mathrm{M}_{2}$ lepidolite was substantially different from that analysed in the present paper, a useful and interesting comparison can be made.

Experimental

A single crystal of a $2 \mathrm{M}_{2}$ lepidolite suitable for structural studies has been obtained from the sample, from Elba (Italy), fully described in a previous work by two of the authors. The sample also contains 1 M crystals for which, as well as for the $2 \mathrm{M}_{2}$ crystals, detailed optical and X-ray data were given (Franzini \& Sartori, 1969).

The intensity data were collected with nickel-filtered $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$) by means of Weissenberg photographs, using the multiple-film technique and integration process. A transparent colourless flake, plate parallel to (001), with a perfect hexagonal outline up to 1.28 mm across and 0.04 mm in thickness, was carefully chosen from among the least deformed crystals (its Weissenberg photographs showed only minor diffuse scattering and spot broadening). Five layers with b as rotation axis ($k=0$ to 4) were recorded; 525 independent reflexions were observed. The intensities, measured with a Nonius microdensitometer, have been corrected for Lorentz and polarization factors. The absorption correction was made by computing the transmission factor by means of a program (Alberti, 1968) based on the Monte Carlo method proposed by Alberti \& Gottardi (1966) for crystals of any shape and absorption: with a linear absorption coefficient of $115 \cdot 31 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$ radiation, the transmission factors were found to vary to a great extent, ranging from $0 \cdot 10$ to 0.65 .

Determination and refinement of the structure

A hypothetical structure for the $2 \mathrm{M}_{2}$ polymorph was proposed by two of us (Franzini \& Sartori, 1969) in a previous paper concerned with the crystal data of the Elba lepidolites. According to this hypothesis, based mainly on one-dimensional data, the $2 \mathrm{M}_{2}$ polymorph
would be built up by the stacking of two mica layers, labelled A and B, differing structurally by the opposite rotations of tetrahedra (deviations from hexagonal symmetry); this structural model would retain an octahedral coordination around the potassium ion, notwithstanding the ditrigonal surface symmetry, for the polymorphs derived from the stacking of mica layers rotated by an odd multiple of 60° (i.e. $2 \mathrm{M}_{2}, 2 \mathrm{O}$ and 6 H).

This hypothesis has not been substantiated by the present study based on three-dimensional data; the full structural analysis, as pointed out also by Takeda et al. (1971), has shown that the structural features of the lepidolites cannot be elucidated by means of a onedimensional Fourier synthesis and that the tendency of the potassium ion to assume an octahedral coordination had been overestimated.

The trial structure was first computed on the basis of such a model of alternating A and B mica layers; the atomic coordinates were derived from those of the basic mica unit (the 1 M form), predicted from the cell dimensions and composition (Donnay, Donnay \& Takeda, 1964), taking into account the geometric relationships between the A and B layers pointed out by Franzini (1969). The space group chosen as the most probable for this model was $C \overline{1}$. Statistical distribution of aluminum and lithium over all octahedral positions was assumed.

The atomic scattering factors were taken from International Tables for X-ray Crystallography (1962), all the atoms being considered in their neutral state. Three cycles of full-matrix least-squares refinement of positional parameters, scale factors and isotropic temperature factors were computed, by means of the program by Busing, Martin \& Levy adapted for the Crystal Structures Calculations System X-ray 63 (Stewart, 1964); the resulting unweighted R_{1} value (defined as $R_{\mathrm{t}}=\sum| | F_{o}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{o}\right|$) for the observed reflexions was $0 \cdot 142$. No further improvement was obtained with subsequent refinement cycles, during which the shifts of positional parameters remained smaller than the standard deviations.

At this stage a refinement in the $C 2 / c$ space group of half of the atoms refined in $C \overline{1}$ was tried; it proved to be successful, since the R_{1} value rapidly dropped to $0 \cdot 130$. All the subsequent refinement cycles were then carried out in space group $C 2 / c$ and the structural model based on alternating A and B mica layers was rejected.
A preliminary computation of the bond lengths showed that the two crystallographically independent octahedra had significantly different mean bond lengths ($\mathrm{M}_{1}-\mathrm{O}=1 \cdot 988, \mathrm{M}_{2}-\mathrm{O}=2 \cdot 119 \AA$); this suggested a remarkable ordering in octahedral cation distribution. On the basis of the values given by Shannon \& Prewitt (1969) for $\mathrm{Li}-\mathrm{O}$ ($2 \cdot 12 \AA$) and Al-O ($1.91 \AA$) distances for lithium and aluminum in octahedral coordination, we computed occupancies corresponding to $\mathrm{Al}_{0.63}$ $\mathrm{Li}_{0.37}$ for position $8(f)$ and $\mathrm{Li}_{0.95} \mathrm{Al}_{0 \cdot 05}$ for position $4(c)$. (Actually the $\mathrm{M}_{2}-\mathrm{O}$ mean distance did not indicate any isomorphic replacement so that at first only Li was
placed in this octahedron; the negative value assumed by its temperature factor forced us to admit for this position a small amount of substitution of aluminum for lithium).

After these changes and two further cycles of refinement the R_{1} value was reduced to $0 \cdot 117$. By a careful survey of the calculated structure factors a few mistakes in estimating intensities and indexing reflexions were corrected; the final value assumed by the unweighted R_{1} index, for all the 525 observed reflexions, was 0.096 , whereas the weighted R_{2} index (defined as $\left[\Sigma w\left|\left|F_{o}\right|-\right.\right.$ $\left.\left|F_{c}\right|^{2} / \sum w\left|F_{o}\right|^{2}\right]^{1 / 2}$) reached $0 \cdot 106$ (in all refinement cycles unit weights were assigned to all reflexions).

No further changes of the octahedral occupancies have been made in the last cycles, since the shifts of the $\mathrm{M}_{\mathrm{oct}}-\mathrm{O}$ mean bond lengths were smaller than their standard deviations; hence the final structural formula is the following:
$\left(\mathrm{K}_{0.88} \mathrm{Na}_{0.06} \mathrm{Rb}_{0.05} \mathrm{Ca}_{0.01}\right)\left(\mathrm{Al}_{0.63} \mathrm{Li}_{0.37}\right)_{2}\left(\mathrm{Li}_{0.95} \mathrm{Al}_{0.05}\right)$ $\left(\mathrm{Si}_{3 \cdot 36} \mathrm{Al}_{0 \cdot 64}\right) \mathrm{O}_{10}\left(\mathrm{~F}_{1 \cdot 53}(\mathrm{OH})_{0 \cdot 47}\right)$.

The observed and calculated factors are compared in Table 1; Table 2 gives the final positional and thermal parameters with their standard deviations.

Discussion of the structure

Before discussing in detail the features of the structure, a few remarks about the model proposed by Franzini

Table 1. Observed and calculated structure factors for $2 \mathrm{M}_{2}$ lepidolite

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and isotropic temperature factors of $2 \mathrm{M}_{2}$ lepidolite

	x	y	z	$B\left(\AA^{2}\right)$
T_{1}	2937 (4)	935 (10)	1338 (2)	$0 \cdot 47$ (7)
T	1251 (4)	5865 (10)	1338 (2)	$0 \cdot 37$ (7)
M_{1}	857 (6)	2583 (15)	3 (3)	$0 \cdot 41$ (9)
M_{2}	2500	7500	0	0.74 (15)
K	0	916 (11)	2500	1.06 (8)
O_{1}	2675 (10)	1055 (26)	534 (5)	$1 \cdot 12$ (17)
O_{2}	908 (10)	5730 (25)	530 (4)	0.93 (16)
$\mathrm{O}_{3}{ }^{*}$	4450 (10)	5743 (26)	497 (4)	1.77 (16)
O_{4}	2070 (12)	3243 (24)	1663 (5)	$1 \cdot 39$ (21)
O_{5}	2366 (13)	8217 (25)	1616 (5)	1.55 (22)
O_{6}	4722 (11)	1241 (26)	1655 (5)	$1 \cdot 24$ (18)
* O_{3} stands for ($\mathrm{OH}+\mathrm{F}$).				

\& Sartori (1969) in their previous paper on Elba lepidolites seem appropriate. On the basis of an α value of about 11°, calculated by assuming the absolute regularity of the tetrahedra, the authors proposed a structure built up by the stacking of A and B mica layers; as a reason for the different features of these layers, they supposed (Franzini, 1969; Franzini \& Sartori, 1969) that such mica layers would have different octahedral compositions, namely a composition close to $\left(\mathrm{LiAl}_{2}\right)$ for the A layer and a composition close to ($\mathrm{Li}_{2} \mathrm{Al}$) for the B layer. However, the structural analysis did not support any difference in composition between the two octahedral sheets of the cell. In the subsequent refinement carried out in the $C 2 / c$ space group, which proved to be the correct one, the two sheets were to be considered equivalent; they were shown to be made up of two small octahedra $\left(\mathrm{Al}_{0.63} \mathrm{Li}_{0.37}\right)$ and a large one ($\mathrm{Li}_{0.95}$ $\mathrm{Al}_{0.05}$). The condition that the mica layers both have an A structure is then realized and the coordination polyhedron around K^{+}becomes a trigonal prism. This kind of coordination, as well as the hexagonal prismatic one shown by polylithionite (Takeda \& Burnham, 1969), is quite unusual for potassium in the structure of the micas; however, it would be (according to Takeda et al., 1971) a no more unstable configuration when considerable amounts of hydroxyl are replaced by fluorine and when the charge of the basal oxygens is very low, i.e. when little Si is replaced by Al in the tetrahedra; this is what generally happens in most of the natural lepidolites. These structural features are associated with a very low tetrahedral rotation angle $\alpha\left(6^{\circ} 27^{\prime}\right)$ compared with the value calculated ($10^{\circ} 58^{\prime}$) on the basis of the Radoslovich (1961) formula: $\alpha=\operatorname{arc}$ $\cos \left(b_{0} / b_{\text {tetr }}\right)$. The low value of α is realized through a considerable distortion of the tetrahedra, which look like elongated trigonal pyramids, with $\mathrm{O}_{\text {basc }}-\mathrm{O}_{\text {base }}=$ $2.627 \AA$ and $\mathrm{O}_{\text {base }}-\mathrm{O}_{\text {apex }}=2 \cdot 688 \AA$. This feature, which cannot be predicted using chemical composition and cell dimensions, and the overestimated tendency of potassium to assume an octahedral coordination induced some of us, as we pointed out earlier, to propose a hypothesis which was not later supported by the experimental data obtained by the three-dimensional structural analysis.

From Fig. 1 and Tables 3 and 4, in which the more interesting interatomic distances and angles are reported, the fundamental features of the structure of this polymorph can be deduced.

In the tetrahedral sheet there is no evidence of any cation ordering, since the two crystallographically inde-

Table 3 Interatomic distances in $2 \mathrm{M}_{2}$ lepidolite

T_{1} tetrahedron	
$\mathrm{T}_{1}-\mathrm{O}_{4}$	1.634 (13) \AA
$\mathrm{T}_{1}-\mathrm{O}_{6}$	1.642 (11)
$\mathrm{T}_{1}-\mathrm{O}_{5} \ddagger$	1.640 (15)
$\mathrm{T}_{1}-\mathrm{O}_{1}{ }^{*}$	1.604 (10)
Mean	1.630 (6)
$\mathrm{O}_{4}-\mathrm{O}_{6}$	2.618 (17)
$\mathrm{O}_{6}-\mathrm{O}_{5}{ }^{\text { }}$	$2 \cdot 642$ (18)
$\mathrm{O}_{5}^{1}-\mathrm{O}_{4}$	2.640 (21)
$\mathrm{O}_{0}-\mathrm{O}_{1}{ }^{*}$	2.678 (16)
$\mathrm{O}_{5}-\mathrm{O}_{1}{ }^{*}$	2.694 (16)
$\mathrm{O}_{4}-\mathrm{O}_{1}{ }^{*}$	2.688 (16)
Mean	$2 \cdot 660$ (7)

T_{2} tetrahedron	
$\mathrm{T}_{2}-\mathrm{O}_{4}$	$1.640(13) \AA$
$\mathrm{T}_{2}-\mathrm{O}_{5}$	$1.628(14)$
$\mathrm{T}_{2}-\mathrm{O}_{6}$	$1.629(12)$
$\mathrm{T}_{2}-\mathrm{O}_{2}{ }^{*}$	$1.612(10)$
Mean	$1.627(6)$
$\mathrm{O}_{4}-\mathrm{O}_{5}$	$2.614(21)$
$\mathrm{O}_{5}-\mathrm{O}_{6}{ }^{11}$	$2.616(17)$
$\mathrm{O}_{6}^{11}-\mathrm{O}_{4}$	$2.635(17)$
$\mathrm{O}_{4}-\mathrm{O}_{2}{ }^{*}$	$2.689(15)$
$\mathrm{O}_{5}-\mathrm{O}_{2}{ }^{*}$	$2.698(16)$
$\mathrm{O}_{6}^{11}-\mathrm{O}_{2}{ }^{*}$	$2.684(15)$
Mean	$2.656(7)$

M_{1} octahedron	
$\mathrm{M}_{1}^{1 \mathrm{lv}}-\mathrm{O}_{1}$	1.981 (13) \AA
$\mathrm{M}_{1}^{\mathrm{iv}}-\mathrm{O}_{2}^{\text {II }}$	1.977 (13)
$\mathrm{M}_{1}^{\mathrm{iv}}-\mathrm{O}_{1}^{\text {iv }}$	1.975 (13)
$\mathrm{M}_{1}^{1 v}-\mathrm{O}_{2}^{\text {iv }}$	1.954 (15)
$\mathrm{M}_{1}^{\mathrm{IV}}-\mathrm{O}_{3} \dagger$	2.005 (16)
$\mathrm{M}_{1}^{\mathrm{lv}}-\mathrm{O}_{3}^{\text {² }}$	1.990 (13)
Mean	1.980 (6)

\[

\]

Table 4. Interatomic angles in $2 \mathrm{M}_{2}$ lepidolite Central atom is the vertex

T_{1} tetrahedron		
$\mathrm{O}_{5}^{1}-\mathrm{T}_{1}-\mathrm{O}_{6} \dagger$	$107.20(64)^{\circ}$	
$\mathrm{O}_{5}^{1}-\mathrm{T}_{1}-\mathrm{O}_{4}$	$107 \cdot 50(68)$	
$\mathrm{O}_{6}-\mathrm{T}_{1}-\mathrm{O}_{4}$	$106.09(63)$	
$\mathrm{O}_{1}^{-}-\mathrm{T}_{1}-\mathrm{O}_{6}$	$111.18(63)$	
$\mathrm{O}_{1}^{1}-\mathrm{T}_{1}-\mathrm{O}_{4}$	$112.23(64)$	
$\mathrm{O}_{1}^{1}-\mathrm{T}_{1}-\mathrm{O}_{5}^{1}$	$112.29(66)$	
\quad Mean	$109.42(26)$	

T_{2} tetrahedron	
$\mathrm{O}_{6}^{11}-\mathrm{T}_{2} \mathrm{O}_{5}$	$106 \cdot 89(67)^{\circ}$
$\mathrm{O}_{6}^{1}-\mathrm{T}_{2}-\mathrm{O}_{4}$	$107 \cdot 40(65)$
$\mathrm{O}_{5}-\mathrm{T}_{2}-\mathrm{O}_{4}$	$106 \cdot 19(65)$
$\mathrm{O}_{2}^{2}-\mathrm{T}_{2}-\mathrm{O}_{4}$	$111.53(66)$
$\mathrm{O}_{2}^{2}-\mathrm{T}_{2}-\mathrm{O}_{5}$	$112.71(66)$
$\mathrm{O}_{2}^{+}-\mathrm{T}_{2}-\mathrm{O}_{6}^{\prime \prime}$	$111.77(58)$
Mean	$109.42(26)$

Amount of rotation
Angles between basal oxygens:

$\mathrm{O}_{6}-\mathrm{O}_{4}-\mathrm{O}_{5}$	107.28 (57) ${ }^{\circ}$
$\mathrm{O}_{4}-\mathrm{O}_{5}-\mathrm{O}_{6}^{\prime \prime}$	132.80 (60)
$\mathrm{O}_{5}-\mathrm{O}_{6}^{\prime \prime}-\mathrm{O}_{4}^{\text {¹II }}$	106.85 (66)
$\mathrm{O}_{6}^{\prime \prime}-\mathrm{O}_{4}^{\prime \prime \prime}$ II $-\mathrm{O}_{5}^{\prime \prime \prime}$	132.55 (59)
$\mathrm{O}_{4}^{\prime \prime \prime}{ }^{\prime \prime \prime}-\mathrm{O}_{5}^{\prime \prime \prime}-\mathrm{O}_{6}$	106.98 (58)
$\mathrm{O}_{5}^{\prime \prime \prime}-\mathrm{O}_{6}-\mathrm{O}_{4}$	133.23 (70)

Tetrahedral rotation angle $\alpha=6.45(13)^{\circ}$.

* Apical oxygens.
\dagger The atoms of the different asymmetric units are related to the symmetry equivalent atoms of the fundamental unit as follows:

i	$x, y-1, z$	v	$1-x, 1-y,-z$	
ii	$x-\frac{1}{2}, y+\frac{1}{2}$,	z	vi	$x, 1+y,-z$
iii	$x+\frac{1}{2}, y-\frac{1}{2}$,	z	vii	$\frac{1}{2}-x, \frac{1}{2}-y,-z$
iv	$\frac{1}{2}-x, \frac{1}{2}-y,-z$	viii	$\frac{1}{2}+x, \frac{1}{2}+y, r$	
			ix	$1-x, \quad y, \frac{1}{2}-z$

pendent tetrahedra are identical within the precision of the determination. The tetrahedra are rather small in comparison with those of all the other micas, both

Fig. 1. View along c^{*} of the $2 \mathrm{M}_{2}$ lepidolite structure showing one $\left(\mathrm{Si}_{2} \mathrm{O}_{5}\right)^{2-}$ ring and part of an octahedral sheet.
dioctahedral and trioctahedral, because of the little replacement of Al for Si . Moreover, as we have already emphasized, these coordination polyhedra are remarkably distorted into a form near to the trigonal pyramid.

Noteworthy is the shortening of the $\mathrm{Si}-\mathrm{O}_{\text {apex }}$ distance (mean length $1.608 \AA$), compared with the $\mathrm{Si}-\mathrm{O}_{\text {base }}$ distance (mean length $1.635 \AA$), a peculiarity wh ch is al 0 encountered in the $2 \mathrm{M}_{2}$ lepidolite structure determined by Takeda et al. (1971), and it is even more evident in the polylithionite structure. This behaviour can be explained on the basis of the $d-p \pi$ bond theory suggested by Cruickshank (1961) as well as on the basis of the Pauling-Zachariasen method of the balancing of valences. If appreciable π bonding is responsible for the short $\mathrm{Si}-\mathrm{O}_{\text {apex }}$ bond, the bond angles subtended at silicon by the tetrahedral edges and involving $\mathrm{O}_{\text {apex }}$ should be affected. They are indeed, with angles 111 to 113°, whereas the angles subtended by the edges made of bridging oxygen atoms range from 106 to $107 \cdot 5^{\circ}$ (Table 4).

In the octahedral sheet we find a considerable ordering of the cations; in fact the lithium ions almost completely fill the $4(c)$ position before entering the $8(f)$ position. Consequently the octahedral sheet appears to be built up from a large octahedron and two smaller ones, assuming a configuration rather similar to that of the corresponding sheet of the dioctahedral micas, with the difference that whereas the Li-rich octahedron is rather close in size to an empty octahedron, the other two octahedra, which still contain an appreciable amount of lithium $\left(\mathrm{Al}_{0.63} \mathrm{Li}_{0.37}\right)$, are larger than the filled octahedra of the dioctahedral micas. As a result the lateral dimensions of the octahedral sheet are rather large, also owing to the flattening of such coordination polyhedra (mainly of the Li-rich octahedron, $\psi=$ $60^{\circ} 47^{\prime}$).
It is then evident that the misfit between such an octahedral sheet and a tetrahedral sheet characterized by small elongated tetrahedra is quite small, and consequently the tetrahedral rotation needed for the adjustment of one sheet to the other is also small. The 'tetrahedral tilt' (calculated according to the formula: $\left.\Delta z=\left[\left(\mathrm{ZO}_{6}+Z \mathrm{O}_{4}\right) / 2-\mathrm{ZO}_{5}\right] . c \sin \beta\right)$ is alsol small; the value $\Delta z=0.086$ attests that the $\mathrm{O}_{\text {tasal }}$ sheet is, on the whole, little corrugated.
As in other micas the K-O distances are of two kinds, due to the reduced, but always manifest, ditrigonal configuration of the oxygen rings on either side of the potassium ion. The observed values (Table 3) give averages of 2.976 and $3.261 \AA$ for the inner and the outer K-O distances, respectively. Since the K-O distances depend on the size of the tetrahedra and on their rotation angle (Takeda \& Burnham, 1966), the small size of the tetrahedra and the low value of α account for the small value of the longer of the two $\mathrm{K}-\mathrm{O}$ distances and explain why the shorter K-O distance is as large as it is. Since in $2 \mathrm{M}_{2}$ polymorph the two mica layers are rotated by 60° on each other, the coordination polyhedron around K^{+}is then a trigonal
prism if we take into account only the 6 inner oxygens, a ditrigonal prism if we consider also the 6 outer oxygens.
A detailed comparison of the parameters of our mica with those of the other two lepidolites whose structures are reported in the literature now seems appropriate. Most interesting, in our opinion, is a comparison with Takeda's $2 \mathrm{M}_{2}$ lepidolite structure. Tables 5 and 6 show in fact a close analogy between the structure of the Elba lepidolite and that of the Rozna lepidolite. However, these crystals are substantially different in composition; if we express their composition in terms of the three end members, polylithionite (Pl)
$\left[\mathrm{KLi}_{2} \mathrm{AlSi}_{4} \mathrm{O}_{10} \mathrm{~F}_{2}\right]$, trilithionite (Tl) $\left[\mathrm{KLi}_{3 / 2} \mathrm{Al}_{3 / 2} \mathrm{Si}_{3} \mathrm{AlO}_{10}\right.$ $\left.(\mathrm{F}, \mathrm{OH})_{2}\right]$ and muscovite $(\mathrm{Ms})\left[\mathrm{KAl}_{2} \mathrm{Si}_{3} \mathrm{AlO}_{10}(\mathrm{OH})_{2}\right]$, the composition of our lepidolite is close to $\mathrm{Pl}_{50} \mathrm{TI}_{50}$, whereas that of the Takeda's mica is $\mathrm{Ms}_{40} \mathrm{Pl}_{30} \mathrm{Tl}_{30}$. These compositions, plotted in the ternary diagram of Munoz (1968), turn out to be of great interest, since Takeda's mica is very close to the region of the mixedlayer Li-micas, while our mica lies on the $\mathrm{Pl}-\mathrm{Tl}$ join, in the field of the 1 M and $2 \mathrm{M}_{2}$ lepidolites.

Table 5. Cell dimensions and structural formulae of $2 \mathrm{M}_{2}$ lepidolites

	Lepidolite, $2 \mathrm{M}_{2}{ }^{*}$	Lepidolite, $2 \mathrm{M}_{2} \dagger$
a	$9.04(2) \AA$	$9 \cdot 032(2) \AA$
b	$5 \cdot 22(2)$	$5 \cdot 200(3)$
c	$20 \cdot 210(1)$	$20 \cdot 15(4)$
β	$99^{\circ} 35^{\prime}\left(20^{\prime}\right)$	$99^{\circ} 46^{\prime}\left(10^{\prime}\right)$
Space group	$C 2 / c$	$C 2 / c$

* $\left(\mathrm{K}_{0.88} \mathrm{Na}_{0.06} \mathrm{Rb}_{0.05} \mathrm{Ca}_{0.01}\right)\left(\mathrm{Al}_{0.63} \mathrm{Li}_{0.37}\right)_{2}\left(\mathrm{Li}_{0.95} \mathrm{Al}_{0.05}\right)$ $\left(\mathrm{Si}_{3.36} \mathrm{Al}_{0.64}\right) \mathrm{O}_{10}\left(\mathrm{~F}_{1.53}(\mathrm{OH})_{0.47}\right)$: Elba, Italy. Present work.
$\dagger\left(\mathrm{K}_{0.87} \mathrm{Na}_{0.12} \mathrm{Rb}_{0.06} \mathrm{Ca}_{0.02}\right)\left(\mathrm{Al}_{0.65} \mathrm{Li}_{0.35}\right)_{2}\left[\mathrm{Li}_{0.35} \mathrm{Al}_{0.10}\right.$ $\left.\left(\mathrm{Fe}^{2+}, \mathrm{Mn}, \mathrm{Mg}\right)_{0.15} \square_{0.40}\right]\left(\mathrm{Si}_{3.39} \mathrm{Al}_{0.61}\right) \mathrm{O}_{10}\left(\mathrm{~F}_{1.2}(\mathrm{OH})_{0.8}\right)$: Rozna, Moravia, Czechoslovakia. Takeda et al. (1971).

Table 6. Comparison of some interatomic distances in $2 \mathrm{M}_{2}$ lepidolites

$2 \mathrm{M}_{2}$ lepidolite from Elba (Present work)	$2 \mathrm{M}_{2}$ lepidolite from Rozna, Moravia (Takeda et al., 1971)
Tetrahedral sheet	

Mean $\mathrm{T}_{1}-\mathrm{O}$	1.630 (6) \AA	1.622 (4) \AA
Mean T_{2} - O	1.627 (6)	$1 \cdot 633$ (4)
		Octahedral sheet
Mean $\mathrm{M}_{1}-\mathrm{O}$	1.980 (6) Å	1.967 (3) \AA
Mean $\mathrm{M}_{2}-\mathrm{O}$	$2 \cdot 123$ (7)	2.144 (4)
		Interlayer region
$\begin{aligned} & \text { Mean K-O } \\ & \text { (inner) } \end{aligned}$	2.976 (9) \AA A	2.980 (5) \AA
Mean K-O	3.261 (9)	$3 \cdot 220$ (5)

(outer)

These compositions are calculated on the basis of chemical analyses of samples which contain both the 1 M and $2 \mathrm{M}_{2}$ polymorphs. The doubt arises that such compositions are not necessarily related to the $2 \mathrm{M}_{2}$ polymorphs structurally analysed and that the close resemblance between the structural parameters re-
ported by Takeda et al. and ours is to be ascribed to the true chemical compositions of the crystals being much closer to each other than the bulk compositions of the samples. Though lacking chemical data on a single crystal, we believe that the satisfactory refinements of the structures rule out this possibility; the reason for the close resemblance of the two structures is then to be found in other features. We think such a reason most likely lies in the following two peculiarities.

The two $2 \mathrm{M}_{2}$ lepidolites have tetrahedral sheets nearly equal in composition ($\mathrm{Si}_{3.39} \mathrm{Al}_{0.61}=$ Rozna lepidolite; $\mathrm{Si}_{3 \cdot 36} \mathrm{Al}_{0.64}=\mathrm{Elba}$ lepidolite) and so are very close in dimensions.

They have octahedral sheets which, though clearly different in composition, are both made up of a large octahedron and two smaller ones, whose sizes are very close in the two lepidolites. Such a close geometric resemblance of the octahedral sheets of the two crystals is achieved through an almost equal composition of the small octahedra $\left(\mathrm{Al}_{0.65} \mathrm{Li}_{0.35}=\right.$ Rozna lepidolite; $\mathrm{Al}_{0.63} \mathrm{Li}_{0.37}=\mathrm{Elba}^{\text {lepidolite }}$) and through the concentration in the larger octahedron of the Rozna lepidolite of all the vacancies, while the corresponding site of the Elba lepidolite accomodates almost only lithium.

The 1 M polylithionite studied by Takeda \& Burnham (1969), in spite of its different polymorphic type, has tetrahedral and octahedral sheets which show features rather close to those of the $2 \mathrm{M}_{2}$ lepidolites. They are even more evident because of the presence of only Si in the first sheet and of the higher content of Li of the second; as a consequence the misfit between them is even less and the tetrahedral rotation angle α lowest $\left(\alpha=3^{\circ}\right)$.

To sum up, we can say that the most interesting feature which emerges from the comparison between all the structurally analysed lepidolites is the constant presence of remarkable octahedral ordering. The $\mathrm{Li}-\mathrm{Al}$ substitution is characterized by concentrating in an octahedral site almost exclusively Li (0.90 to 0.95 in polylithionite and in the Elba lepidolite) or Li plus vacancies (0.75 in the Rozna lepidolite), and by filling the other two sites with Al plus the remaining Li. It is in this distorted octahedral sheet and in its consequently easy adaptability to the tetrahedral sheet without a great deviation from hexagonality of the latter, that we think lies the main difference between the structure of the polylithionite-rich lepidolites and that of the lepid-
olites close to trilithionite, characterized by having the $2 \mathrm{M}_{1}$ as the more stable polymorph (Munoz, 1968). The discontinuity observed by Munoz (1968) between them would then be a discontinuity which separates a structure with a remarkable octahedral ordering from one with a disordered octahedral sheet. Rieder (1968), in his paper on lithium-iron micas, also suggested that the octahedral sheet of the trilithionites must be disordered.
However the final answer to the problem of the relations between the structure of trilithionites and that of the other lepidolites and between the former and that of the $2 \mathrm{M}_{1}$ lithian muscovites can be given only by the crystal structure analysis of a $2 \mathrm{M}_{1}$ trilithionite.

This work was supported by Consiglio Nazionale delle Ricerche, Roma.

All the calculations were performed on the IBM 7090 computer of the Centro Nazionale Universitario di Calcolo Elettronico (Pisa).

References

Alberti, A. (1968). Period. Mineral. 37, 595-612.
Alberti, A. \& Gottardi, G. (1966). Acta Cryst. 21, 833834.

Cruickshank, D. W. (1961). J. Chem. Soc. p. 5486.
Donnay, G., Donnay, J. D. H. \& Takeda, H. (1964). Acta Cryst. 17, 1374-1381.
Franzini, M. (1969). Contrib. Mineral. Petrol. 21, 203-224.
Franzini, M. \& Sartori, F. (1969). Contrib. Mineral. Petrol. 23, 257-270.
Hendricks, S. B. \& Jefferson, M. E. (1939). Amer. Min. 24, 729-771.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Munoz, J. L. (1968). Amer. Min. 53, 1490-1512.
Radoslovich, E. W. (1961). Nature, Lond. 191, 67-68.
Rieder, M. (1968). Science, 160, 1338-1340.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B 25, 925-946.
Stewart, J. M. (1964). Crystal Structures Calculations System X-ray 63. Tech. Rep. TR-64-6, Computer Science Center, Univ. of Maryland, and Research Computer Laboratory, Univ. of Washington.
Takeda, H. \& Donnay, J. D. H. (1966). Acta Cryst. 20, 638-646.
Takeda, H. \& Burnham, C. W. (1969). Mineral. J. 6, 102-109.
Takeda, H., Haga, N. \& Sadanaga, R. (1971). Mineral. J. 6, 203-215.

